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Abstract--An inverse analysis is used to estimate linearly temperature dependent thermal conductivity 
components kx(T), ky(T) and specific heat capacity C(T) per unit volume for an orthotropic solid. 
Simulated measured transient temperature data are generated by adding random errors to the exact 
temperatuies computed from the solution of the two-dimensional, direct transient heat conduction problem. 
An iterative procedure, based on minimizing a sum of squares function with the Levenberg-Marquardt 

iterative procedure is used to solve the inverse problem. 

INTRODUCTION 

There are many natural and man-made materials such 
as crystals, wood, thermo-plastic-matrix composites, 
etc., in which the thermal conductivity varies with 
direction as well as temperature. The analysis of heat 
conduction in a general anisotropic solid is quite com- 
plicated; but significant simplifications occur in the 
analysis for orthol:ropic materials that have a diagonal 
thermal conductivity matrix [1]. Composite materials 
enjoy an increasing use in diverse engineering appli- 
cations because of their well-known advantages, such 
as enhanced physical properties and ease of process- 
ing. A wealth of literature exists on the mechanical 
properties of composites; but only a limited amount 
of work is available on the determination of their 
thermal properties. Recently, interest has been 
increased in the thermal properties of orthotropic 
materials because of their extended applications in 
engineering [2]. 

In this work we present an inverse method of analy- 
sis for estimating the linearly temperature dependent 
thermal conductivity components kx(T), ky(T) and 
the specific heat capacity C(T) for an orthotropic solid 
by utilizing simulated transient temperature rec- 

tAuthor to whom correspondence should be addressed. 

ordings taken at three locations on the surface of 
the solid. Simulated transient temperature data are 
generated by adding random errors to the exact tem- 
peratures obtained from the solution of the two- 
dimensional direct heat conduction problem. The 
Levenberg-Marquardt iterative procedure is used to 
solve the inverse problem. 

The basic steps in the analysis include the solution 
of the direct problem, the inverse problem and the 
solution algorithm as described below. 

DIRECT PROBLEM 

We consider a two-dimensional transient heat con- 
duction problem in an orthotropic solid confined to a 
rectangular region 0 ~< x ~< a, 0 ~< y ~< b. Let, k~(T) 
and ky(T) be the thermal conductivity components 
along the x and y directions respectively, and C(T) be 
the specific heat capacity of the solid. Initially the solid 
is at a uniform temperature To. For times t > 0, the 
boundary surfaces at x = 0, y = 0 are subjected to a 
constant heat flux q W m -2, while the boundary sur- 
faces at x = a and y = b are kept insulated. The tran- 
sient temperature recordings are taken at three surface 
locations as illustrated in Fig. 1. 

The mathematical formulation of the direct tran- 
sient heat conduction problem is given by 
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NOMENCLATURE 

a, b dimensions of the orthotropic A 
rectangular region in the x, y 
directions p 

C(T) = Co+ C~ T specific heat capacity 
ke = keo+ke~T thermal conductivity, P = x a 

or y 
n~ number of temperature sensors 
n, number of temperature readings per 

thermocouple during the experiment 
P thermal property vector with 

components Pi(Co, Ci, k~o, kx1, k,o, kyO 
q heat flux 
S sum of squares function 
t time 
T computed temperature 
x, y rectangular coordinates 
Y measured temperature. 

Greek symbols 
6 Kronecker delta 

time or space increment 
small number 
Levenber~Marquardt parameter 
defined by equation (6a) 
standard deviation of the 
measurement error. 

Subscripts 
0 initial value 
i, j index to the thermal property or 

temperature array element 
x, y conductivity component direction. 

Superscripts 
n iteration number 
T transpose of a vector 

Y 

insulated 

TC 1: (0,0) 
TC 2: (0.4a,0) 

TC 3: (0,0.4b) 

initially i 
q T=T0 b insulated 

i [ ' C  1 TC 2 
~ X  

O q 
Fig. 1. Geometry, coordinates and thermocouple locations. 

~ kx(T) + fffy ky(T) = C(T) o t 

i n O < x < a , O < y < b ,  for t > 0. 

Subject to the boundary conditions 

0T 
- - k ~ ( T ) ~ x =  q a t x = 0 ,  t > 0  

~3T 
- - = 0  a t x = a , t > 0  
Ox 

0T 
- - k y ( T ) ~ y = q  a t y = 0 ,  t > 0  

~T 
- 0  a t y = b , t > O  ~y 

and the initial condition is taken as 

T =  To f o r t = 0  (If) 

in the region where the thermal conductivity com- 
ponents kx(T), k , (T)  and the heat capacity C(T) are 
assumed to depend on temperature linearly in the 
form 

kx(T) = kxo+kx~ T (2a) 

k~. (T) = k.,o + k,.~ T (2b) 

C(T) = Co+ C, 7". (2c) 

Once the boundary and initial conditions and the ther- 
mal properties are specified, the direct problem 
defined by equations (1) and (2) can be solved numeri- 
cally and the temperature distribution can be cal- 
culated as a function of time and position anywhere 
in the medium. 

INVERSE PROBLEM 
(la) 

The thermal properties as defined by equations (2) 
involve six unknown coefficients, Co, C1, kxo, k~, k~, 
kyl, for their determination. The inverse problem con- 

(1 b) sidered here is concerned with the estimation of these 
six coefficients from the knowledge of transient tem- 

(lc) perature measurements taken at three different 
locations on the surface of the region. It is assumed 
that the temperature data are obtained by three sen- 

(ld) sors placed at the locations (0, 0), (0.4a, 0) and (0, 
0.4b). The inverse problem can then be regarded as 
an optimization problem which aims at finding the 

(le) unknown thermal property vector P-= [P~ . . . . .  
P0] r =  [Co, C1, kx0, kxj, ky0, ky] T that minimizes the 
following sum of squares function 
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where 

S(P) ~ '  =: [T~(P)- y~]2 = FTF (3) 
i = 1  

F , -  r,-- Y, (4) 

and n~ is the number of sensors (ns = 3 for the present 
problem) and n, is the number of temperature rec- 
ordings per thermocouple during the experiment. In 
addition T~(P) is the computed temperature at the 
sensor location at time corresponding to the ith 
measurement and Y~ is the ith temperature measure- 
ment. The temperature T~(P) is obtained from the 
solution of the direct ~roblem defined previously for 
specified thermal property coefficients. The function 
Ft is defined by equation (4), vanishes when T~ is 
computed using Lhe exact values of the property 
coefficients and Yg contains no measurement errors. 

The parameters P, which minimize the function S 
defined by equation (3), satisfy the following set of 
nonlinear algebraic equations 

~ ~ (T,- Y,) = 0, j = 1-6 (5) 

which are obtained by differentiating equation (3) 
with respect to each of the parameters P and setting 
these derivatives equal to zero. To solve the resulting 
system of algebraic equations (5), the Levenberg- 
Marquardt iterative method is chosen. This algorithm 
combines the steepest descent and Newton methods. 
Starting the iterations with a large value of the Lev- 
enberg-Marquardt parameter #, more emphasis is 
given initially to the steepest descent method, since a 
good initial guess is not required with this method; 
but the convergence is slow. As the value of the par- 
ameter # is gradually reduced at each iteration step, 
the weight is increasingly shifted to the Newton 
method which converges faster [3, 4]. 

By expanding T, in a Taylor series, retaining only 
the first-order terms and adding the Levenber~Mar- 
quardt parameter #, we obtain the following formula 
to compute the search direction for the parameters P 

P"+' =: P " - - ( J T J + I t " I ) - ~ j T F  (6a) 

where 

aT, 
J ~ -  8Pj (6b) 

are the elements of the Jacobian matrix J, I is the 
identity matrix and the superscript n is the iteration 
index. Setting the parameter #" equal to zero, the 
Newton method is obtained; and as /~n~ m, the 
steepest descent method is realized. The solution of 
the inverse problem starts with a suitable guess p0, 
and the iterations are continued until 

IP7 +' - P T I  < ~, i =  1-6 (7) 

where e is a small number. 

The elements of the Jacobian matrix J~, known as 
the sensitivity coefficients, can be calculated from the 
following central finite differencing formula 

8 T,(P) T , ( P + e U j )  - TI ( P -  e U/) 
(8) 

8Pj 2e 

where Uj = [6 v . . . . .  66j] T, 6 is the Kronecker delta and 
e is a small number. 

STATISTICAL ANALYSIS 

The statistical analysis of uncertainty in the inverse 
solution results is useful in order to estimate the com- 
putation accuracy. Assuming that the temperature 
measurement errors are additive, independent and 
have zero means with constant variances a 2, then the 
standard deviation of the estimated thermal property 
P~ is given by [5] 

8 T  r OT - l  

If we also assume a normal distribution for the tem- 
perature measurement errors and 99% confidence 
bounds for the computed thermal property Pj, then 
we have 

Probability[(P,-2.576~pl) < P~ ..... t 

< (P~+2.576~m)] ~- 99%. (10) 

SOLUTION ALGORITHM 

Having established the basic computational steps 
needed for the solution of the above inverse problem, 
we now present the solution algorithm. 

Let P", Ti(Pn), ,u" and S" values be available at the 
nth iteration level. The calculations are carried out in 
the following manner. 

Step 1. Compute the sensitivity coefficients 8Ti/SPj  
using equations (1), (2) and (8). 

Step 2. Knowing Ti(P ' ) ,  Y~, P ' ,  I~", and the sensitivity 
coefficients, compute a new set of thermal 
properties P from equation (6). 

Step 3. Solve the direct problem given by equations 
(1) and (2) to find TI(P). 

Step 4. Find a corresponding new S from equation 
(3). 

Step 5. If S > S" ; double the value of #n, update S" 
to S and go back to step (2). If not, set 
/~"+~ = #'/2 and go on to the next step. 

Step 6. Check if condition (7) is met. If not, update 
P", TI(P') and S n to P, T,(P) and S respec- 
tively and go back to step (1). 

RESULTS AND DISCUSSION 

To demonstrate the validity and accuracy of the 
method of inverse analysis considered here for the 
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Table 1. Initial guess is one tenth of the exact value, cr = 0.0 

S /1 CoxlO 6 C1x10 3 k~ k~lxlO 3 k,~ k, lx lO  3 

38508940 100.000 0.1700 0.2608 0.0608 0.0125 0.4752 0.7320 
9475679 50.000 0.3242 0.6783 0.0826 0.0982 0.9521 1.7717 
1829981 25.000 0.6143 1.2915 0.1356 0.5420 2.0713 2.9610 
223980 12.500 1.0527 1.6523 0.3932 0.8631 3.6969 3.4831 

12242 6.250 1.5024 1.7858 0.5711 0.9646 4.7407 3.6636 
134 3.125 1.7023 1.8247 0.6120 0.9903 5.0828 3.7185 
24 1.562 1.7198 1.8396 0.6121 1.0023 5.1446 3.7452 
23 0.781 1.7185 1.8569 0.6093 1.0181 5.1456 3.7817 
21 0.391 1.7176 1.8934 0.6029 1.0469 5.1348 3.8541 
19 0.195 1.7162 0.9616 0.5904 1.1037 5.1131 3.9934 
15 0.098 1.7133 2.0810 0.5705 1.1902 5.0755 4.2402 
10 0.049 1.7105 2.2400 0.5405 1.3179 5.0174 4.6302 
6 0.024 1.7067 2.4344 0.5103 1.4126 4.9436 5.1717 
3 0.012 1.7062 2.5192 0.5099 1.2869 4.8771 5.7740 
1 0.006 1.7044 2.5769 0.5326 0.9572 4.8192 6.3959 
0 0.003 1.7013 2.6219 0.5675 0.5419 4.7804 6.8824 
0 0.002 1.7001 2.6188 0.5950 0.2586 4.7615 7.1754 
0 0.001 1.7002 2.6101 0.6045 0.1577 4.7530 7.2930 
0 0.000 1.7000 2.6082 0.6076 0.1299 4.7519 7.3153 
0 0.000 1.7000 2.6077 0.6081 0.1249 4.7516 7.3198 
0 0.000 1.7000 2.6080 0.6081 0.1250 4.7516 7.3200 

The solution 1.7000 2.6080 0.6081 0.1250 4.7516 7.3200 
Standard deviations 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
%error  0.0 0.0 0.0 0.0 0.0 0.0 

es t imat ion of  thermal  proper ty  coefficients, we present  
the following numerical  experiments.  

The dimensions  of  the physical domain  are t aken  
as 

a = b =  5em  

thermal  conduct ivi ty  coefficients as 

k x 0 = 0 . 6 0 8 1 W m  l ° C - I ,  

k x l = 0 . 1 2 5 × 1 0 - 3 W m  l°C-Z 

ky0 = 4 . 7 5 2 W m  -I  °C l, 

k y j = 7 . 3 2 × 1 0 - 3 W m  1°C-2 

and  the heat  capacity coefficients as 

Co = 1.7× 1 0 6 j m - 3 ° C - 1 ,  

C, = 2 .608× 1 0 3 j m - 3 ° C  2. 

Initial  t empera ture  of  the med ium is To ---- 20 °C and  
the applied heat  flux q = 25 k W  m -2. Thermal  con- 
ductivity data  chosen here are representat ive of  APC-  
2 (aromat ic  polymer  composi te)  [6]. 

The simulated experimental  t empera ture  data  are 
generated by solving the direct heat  conduc t ion  prob-  
lem defined by equat ions  (1) and  (2) with  the explicit 
finite difference scheme taking time increments  of  
At = 0.1 s and  space steps of  Ax = Ay = 1 cm. Tem- 
pera ture  readings were recorded every 5 s for each of  
the three thermocouples .  The  first sensor gave the 
highest  t empera ture  at  any time despite the geometric 
symmetry of  the rec tangular  region, the second sensor 
had  readings higher  than  the th i rd  one because of  
higher  thermal  conduct ivi ty  in the y direction. The 
s imulated measured  tempera ture  Ym . . . . .  d is ob ta ined  

by adding an  error  term (Da to the computed  exact 
temperature Texac t as 

Ymeasured = Texact -}- (DO" 

where O" is the s tandard  deviat ion of  measurement  
errors. Assuming  99% confidence for the measured  
data,  w lies in the range - 2 . 5 7 6  ~< (D ~< 2.576 and  it 
is r andomly  generated by using the I M S L  subrout ine  
D R N N O R  [7]. 

Tables 1 to 4 are prepared  to demons t ra te  the effects 
of  the initial guess for the values of  the thermal  prop-  
erty coefficients p0 _= {k~0, kxl, ky0, ]¢,1, Co, CI} ° and  
the L e v e n b e r g - M a r q u a r d t  pa ramete r  #0 on  the con- 
vergence of  the inverse solution. Tables  1 and  2 are 
for the cases when  the initial guess underest imates  
the values of  these coefficients, while Tables 3 and  4 
overest imate them. A large n u m b e r  of  cases falling 
between these two limiting si tuations have also been 
examined,  but  the results are no t  presented here. It 
is observed tha t  the solut ion of  the inverse p rob lem 
considered here would converge with an initial guess 
underes t imat ing  the coefficients by as low as one- ten th  
of  the exact values for the case of  no  measurement  
error  (i.e. a = 0) as shown in Table 1. For  this case, 
the s tar t ing value of  the L e v e n b e r g - M a r q u a r d t  par-  
ameter  #0 should not  be less than  tha t  t aken  in this 
table for convergence. Table  1 also shows tha t  for 
exper imental  da ta  with  no  measurement  error  (i.e. 
O" = 0), the solut ion produces  exact results for the 
computed  thermal  properties.  Table 2 presents results 
similar to those given in Table  1, except the exper- 
imental  da ta  conta in  measurement  errors  of  s tandard  
devia t ion O" = 1.0. In this case, the inverse analysis 
produces  the thermal  proper ty  coefficients with errors 
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Table 2. Initial guess is one tenth of the exact value, a = 1.0 
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S /t C0×10 6 G x l 0  3 k~o kxl×103 ky0 kyl×103 

38518260.0 50.0000 0.1700 0.2608 0.0608 0.0125 0.4752 0.7320 
9463424.0 25.0000 0.3221 0.6830 0.0987 0.0652 0.9360 1.8136 
1878993.4 12.5000 0.6012 1.4117 0.1326 0.4684 1.9525 3.2808 
232581.5 6.2500 1.0306 1.8715 0.3760 0.8606 3.5953 3.9647 

12632.6 3.1250 1.4767 2.0362 0.5665 0.9776 4.7128 4.1702 
217.3 1.5625 1.6902 2.0826 0.6003 1.0042 5.0240 4.2243 
112.0 0.7812 1.7153 2.1055 0.5956 1.0169 5.0537 4.2531 
111.2 0.3906 1.7141 2.1463 0.5902 1.0388 5.0473 4.2993 
109.9 0.1953 1.7114 2.2237 0.5811 1.0711 5.0319 4.3920 
107.7 0.0977 1.7074 2.3531 0.5632 1.1515 5.0045 4.5516 
105.1 0.0488 1.7011 2.5405 0.5425 1.2175 4.9639 4.8131 
102.9 0.0244 1.6956 2.7137 0.5268 1.2263 4.9142 5.1762 
101.2 0.0122 1.6894 2.8979 0.5199 1.1353 4.8584 5.6345 
100.5 0.0061 1.6840 3.0075 0.5309 0.9408 4.8257 5.9540 
100.0 0.0031 1.6819 3.0499 0.5474 0.7238 4.7970 6.2767 
99.8 0.0015 1.6784 3.0902 0.5718 0.4568 4.7848 6.4768 
99.8 0.0031 1.6793 3.0799 0.5668 0.5090 4.7858 6.4536 
99.8 0.0015 1.6792 3.0811 0.5674 0.5021 4.7855 6.4591 
99.8 0.0008 1.6825 2.9631 0.6034 0.2082 4.7865 6.6168 

The solution 1.6794 3.0357 0.5999 0.1977 4.7764 6.6776 
Standard deviation:~ 0.0352 0.6299 0.0934 0.8977 0.0858 0.8850 
% e r r o r  1.2 16.4 1.3 58.2 0.5 8.8 

Table 3. Initial guess is five times the exact value, a = 0.0 

S p Co x 10 6 Cl × 10 3 kx0 k,l × 103 k~,a kyl × 103 

710937.7 50.0000 8.5000 13.0400 3.0405 0.6250 23.7580 36.6000 
637537.9 25.0000 6.3854 12.9752 2.2389 0.5970 23.2572 36.5811 
168975.1 12.5000 1.1213 12.7921 0.1971 0.5128 22.2649 36.5425 

.783222.6 25.0000 -0 .2386  12.6751 1.1784 0.4519 21.2516 36.4493 
142680.5 12.5000 --0.1162 12.7209 0.9788 0.5075 21.7344 36.4946 

98861.8 6.2500 0.1345 12.5195 1.5275 0.4573 20.8958 36.3812 
93122.7 3.1250 0.2013 12.0968 1.7540 0.3292 19.1154 36.1673 
80363.3 1.5625 0.2920 11.3017 1.7391 0.0607 15.2867 35.7182 
38703.4 0.7812 0.5420 9.8206 1.3829 -0 .5078  6.9268 34.7037 
59319.4 1.5625 1.2156 8.1613 0.2296 - 1.3006 -0 .1045  33.4647 
24367.1 0.7812 1.1139 8.8112 0.3321 - 1.0555 0.9368 33.8155 

1648.4 0.3906 1.5010 8.8177 0.1954 - 1.6253 1.8647 33.0827 
1171.8 0.1953 1.5802 8.6436 0.2318 -2 .4365  2.0350 31.8815 
894.1 0.0977 1.5669 8.2844 0.4184 -3 .8443  2.2980 29.9167 
581.5 0.0488 1.5518 7.4857 0.6951 - 5.6249 2.7123 26.8348 
334.8 0.024~ 1.5380 6.6522 0.9600 -7 .1068  3.2046 22.9319 
152.7 0.0122 1.5894 4.6767 1.2002 -7 .5911 3.7907 18.2217 
56.7 0.0061 1.6393 3.5079 1.1023 - 5.5160 4.2370 13.7636 
12.9 0.0031 1.6737 2.8801 0.8825 -2 .8756  4.5506 10.1739 

1.3 0.0015 1.6942 2.6182 0.7007 -0 .8326  4.6968 8.2069 
0.1 0.0008 1.6998 2.6019 0.6246 -0 .0622  4.7379 7.5266 
0.0 0.0004 1.6999 2.6097 0.6086 0.1143 4.7502 7.3379 
0.0 0.0002 1.7000 2.6088 0.6081 0.1247 4.7516 7.3203 
0.0 0.0001 1.7000 2.6080 0.6081 0.1249 4.7516 7.3201 
0.0 0.0000 1.7000 2.6080 0.6081 0.1250 4.7516 7.3200 

The solution 1.7000 2.6080 0.6081 0.1250 4.7516 7.3200 
Standard deviation:~ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
% e r r o r  0.0 0.0 0.0 0.0 0.0 0.0 

v a r y i n g  f r o m  0 . 5 %  to 58%.  T h e  w o r s t  e r ro r  occu r s  m 

the  e s t i m a t i o n  o f  the  coeff icient  kx~, w h i c h  is the  sma l -  

lest  o f  the  six d i f fe rent  coeff ic ients  c o n s i d e r e d  here.  

T a b l e s  3 a n d  4 i l lus t ra te  t he  c o n v e r g e n c e  o f  the  

s o l u t i o n  w h e n  t he  ini t ia l  g u e s s e s  o v e r e s t i m a t e  the  

coeff ic ients  by  a f a c t o r  o f  five. T a b l e  3 p r e s e n t s  resu l t s  

for  t he  case  o f  e x p e r i m e n t a l  d a t a  c o n t a i n i n g  n o  

m e a s u r e m e n t  e r ro r s  (i.e. a = 0) a n d  t he  inve r se  so lu -  

t ion  c o n v e r g e s  to t he  exac t  v a l u e s  o f  the  t h e r m a l  p r o p -  

e r ty  coefficients .  Tab l e  4 p r e s e n t s  r e su l t s  s imi la r  to 

t h o s e  g iven  in Tab l e  3, excep t  the  e x p e r i m e n t a l  d a t a  

c o n t a i n  m e a s u r e m e n t  e r ro r s  o f  s t a n d a r d  d e v i a t i o n  
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Table 4. Initial guess is five times the exact value, tr = 0.5 

S p Co×lO 6 C t x l O  3 k~o kx~×lO 3 k,~ k , )×lO 3 

710418.5 500.0000 8.5000 13.0400 3.0405 0.6250 23.7580 36.6000 
703992.6 250.0000 8.2795 13.0332 2.9568 0.6220 23.7063 36.5981 
690061.8 125.0000 6.8273 13.0186 2.7853 0.6145 23.6028 36.5942 
656074.5 62.5000 6.8584 12.9872 2.4070 0.6005 23.3907 36.5862 
548150.8 31.2500 4.6586 12.9145 1.5494 0.5655 22.9673 36.5689 

295374240.0 62.5000 -0.4325 12.7252 -0 .4292 0.4718 22.2199 36.5348 
229995.8 31.2500 1.5649 12.7995 0.3041 0.5075 22.5510 36.5499 

79696224.0 62.5000 -0.2929 12.7178 0.8098 0.5100 22.0804 36.5134 
136196.4 31.2500 0.0303 12.7322 0.4357 0.5024 22.2969 36.5306 
103554.2 15.6250 0.1607 12.6684 1.0639 0.4934 21.9615 36.4846 
99603.3 7.8125 0.1696 12.5220 1.5206 0.4545 21.2717 36.4018 
95569.9 3.9062 0.1888 12.1970 1.7577 0.3520 19.8646 36.2303 
86407.1 1.9531 0.2538 11.5751 1.8000 0.1405 16.8948 35.8834 
58414.4 0.9766 0.4274 10.3958 1.5755 -0.3029 10.3477 35.1024 
77637.2 1.9531 0.9642 8.3900 0.6597 - 1 .1351  -0.2036 33.6732 
17621.5 0.9766 0.8077 9.2736 0.8641 -0.8315 2.9194 34.1603 
4671.3 0.4883 1.3887 9.0697 0.0953 -1.2041 1.7347 33.4952 
1326.6 0.2441 1.5582 8.8468 0.2071 -2.1209 1.9881 32.4085 
1040.0 0.1221 1.5686 8.5258 0.3524 - 3.3632 2.1874 30.6493 
727.4 0.0610 1.5503 7.9994 0.5883 - 5.0490 2.5450 27.9492 
438.1 0.0305 1.5372 7.0320 0.8863 -6 .7834 3.0373 24.1392 
235.4 0.0153 1.5746 5.3301 1.1333 7.6694 3.6165 19.5446 
108.6 0.0076 1.6190 3.8586 1.1909 -6.6531 4.1410 14.8118 
48.4 0.0038 1.6569 3.0927 0.9978 -3 .9884 4.5147 10.7510 
28.5 0.0019 1.6878 2.6763 0.7421 - 1.2055 4.6783 8.3770 
25.3 0.0010 1.6890 2.7960 0.6421 -0.2371 4.7385 7.3787 
24.9 0.0005 1.6902 2.8271 0.5968 0.2152 4.7599 7.0145 

The solution 1.6899 2.8220 0.6013 0.1873 4.7646 6.9824 
Standard deviations 0.0176 0.3132 0.0471 0.4613 0.0432 0.4427 
% error 0.6 8.2 1.1 49.9 0.3 4.6 

cr = 1.0. The  er rors  involved in the  e s t ima t ion  o f  the  
t he rma l  p r o p e r t y  coefficients are  small  excep t  for  the  
case o f  the  coefficient kx~ wh ich  has  the  smal les t  value. 
As  expected ,  the e r rors  in the  e s t ima ted  coefficients 
increase  as the  s t a n d a r d  dev ia t ion  o f  the  t e m p e r a t u r e  
m e a s u r e m e n t  error ,  a, increases.  

The  effect o f  the  sensor  loca t ion  on  the  accuracy  o f  
e s t ima t ion  is also examined  by p lac ing the  sensors  at  
the  inner  loca t ions  (0.2a, 0.2b),  (0.6a, 0.2b) and  (0.2a, 
0.6b) and  c o n d u c t i n g  c o m p u t a t i o n s  s imilar  to those  
d iscussed previously .  The  accuracy  o f  the  inverse  
analysis  d id  no t  seem to be affected by such a change  
in the sensor  locat ion.  

The  C P U  t ime for  the c o m p u t a t i o n s  wi th  an  IBM 
RS6000 sys tem was  o f  the  o rde r  o f  a few minutes .  

CONCLUSION 

Inverse  analysis  uti l izing an  i terat ive p r o c e d u r e  
based  on  min imiz ing  the  s u m  o f  squares  func t ion  wi th  
the  L e v e n b e r g - M a r q u a r d t  m e t h o d  can  be used  to  esti- 

m a t e  the  the rmal  conduc t iv i ty  c o m p o n e n t s  kx(T),  
k~v(T ) a n d  the  specific hea t  capac i ty  C(T)  vary ing  
l inearly wi th  t e m p e r a t u r e  in an o r t h o t r o p i c  solid. 
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